Lecture 02

Introduction to Convex Programming
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Wireless Interference Model. The dashed circles indicate the interference regions
of the two destination nodes. Due to interference, only one node can transmit at a time.

We have to schedule the fraction of time allocated to the two possible hops as well as the
rate allocated to each flow.



Example Resource Allocation in Wireless Networks

In the previous slide, there are three flows in progress and two of the nodes act as
destinations.

Around each destination, we draw a circle that is called either the reception range
or interference region, associated with that destination.

A transmitter has to lie within the reception range of a receiver for the transmission
to be successful.

In addition, no other node in the interference region can transmit if the receiver is
to receive the transmitted data successfully.

Thus, If node 2 is to successfully receive data, either node 3 or node 1 may
transmit, but not both at the same time.



Example Resource Allocation in Wireless Networks

« We have to consider both the scheduling of the links to avoid interference as well
as rate allocation to each flow.

We incorporate the interference constraint by introducing new variables which indicate
the fraction of time that each link is scheduled.

Let R;; be the fraction of time that node 7 transmits to node j.
Also, define the vector R = [R12, Ros, Rgg]T.

Since nodes 1 and 2 cannot transmit simultaneously, we have R+ Ro3 + R32 < 1.

Thus, the network utility maximization problem becomes 2
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Central concept: convexity

Historically, linear programs were the focus in optimization

Initially, it was thought that the important distinction was between
linear and nonlinear optimization problems. But some nonlinear
problems turned out to be much harder than others ...

Now it is widely recognized that the right distinction is between
convex and nonconvex problems
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Convex sets and functions

Convex set: (' C R"™ such that
r,yeC — ter+(1—-t)yeC forall 0 <t <1
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Convex function: f : R"™ — R such that dom(f) C R" convex, and

flte+(1—=t)y) <tf(x)+(1—=1t)f(y) for 0 <t <1
and all z,y € dom(f)



* |n mathematics, a real-valued function defined on an n-dimensional interval is
called convex if the line segment between any two points on the graph of
the function lies above or on the graph.
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Convex optimization problems

Optimization problem:

min X
xeD f( )
subject to  gi(x) <0, i=1,...m

hj(x) =0, j=1,...r

Here D = dom(f) N ()2, dom(g;) N ﬂjzl dom(h;), common
domain of all the functions

This is a convex optimization problem provided the functions f
and g;,7 =1,...m are convex, and h;,j = 1,...r are affine:

hi(x) = a;‘-n:r +b;, j=1,...r



Local minima are global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible—ax € D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(x) < f(y) for all feasible y, ||z — yll2 < p.

then
f(xz) < f(y) for all feasible y

This is a very useful
fact and will save us Convex Nonconvex
a lot of trouble!
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Theorem (Local minima are global minima)
For a convex optimaization problem, iof x s feasible and minimizes [ in a local neighborhood,
f(x) < fly) for all feasible y, ||x — yll2 < p,

then f(x) < f(y) for all feasible v.

Proof: Suppose dz € D and is feasible such that f(z) < f(x).

According to the definition of local minima, we have ||z — z||2 > p.

We let y = tr + (1 — t)z, where 0 < ¢t < 1.

Because D is a convex set, according to its definition we also have y € D.



Then for each 7 = 1....,m.

For each 7 =1, ..., 7,

From (

1.1

gi(tr + (1 —t)z) < tgi(x) + (1 —t)gi(2) <0.  (1.1)

hi(te + (1 —t)z) =0 (1.2)

) and (

1.2

). we conclude vy 1s also feasible.

If we let t large enough (close to 1 but less than 1) such that ||z — y||o < p, we obtain

fly) = flte+ (1 —t)z) <tf(x) + (1 —1)f(z) < f(z),

which 1s contradictory to the local minima definition.

So by proof of contradiction, we conclude the local minima are also global minima.



Appendix |:

Vector Norms



Norms
A nmorm of a vector ||x|| is informally a measure of the “length” of the vector. For example,
we have the commonly-used Euclidean or 5 norm,
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Note that ||z||3

More formally, a norm is any function f : R" — IR that satisfies 4 properties:
1. For all z € R", f(x) > 0 (non-negativity).
2. f(x) =0 if and only if z = 0 (definiteness).
3. For all z € R", t € R, f(tx) = |t|f(z) (homogeneity).
4. For all z,y € R™, f(x +y) < f(x) + f(y) (triangle inequality).



Norms

Other examples of norms are the ¢; norm,

T
Jzlli =) |zl

i=1

and the /., norm,
|2]|oe = max; |z;|.

In fact, all three norms presented so far are examples of the family of ¢, norms, which are
parameterized by a real number p > 1, and defined as
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